Question 12: Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P and $1/\alpha + 1/\beta = 4$, then the value of $|\alpha - \beta|$ is

- (a) √34/9
- (b) 2\13/9
- (c) √61/9
- (d) 2\17/9

Solution:

Given that α and β be the roots of equation $px^2 + qx + r = 0$

So sum of roots = $\alpha + \beta = -q/p$

Product of roots = $\alpha\beta$ = r/p

Given $1/\alpha + 1/\beta = 4$

$$\Rightarrow$$
 $(\alpha + \beta)/\alpha\beta = 4$

$$\Rightarrow$$
 $(\alpha + \beta) = 4\alpha\beta$

$$=> -q/p = 4r/p$$

p, q, r are in A.P.

Substitute (i) in (ii)

$$-8r = p+r$$

$$-9r = p$$

$$=> r/p = -1/9$$

$$=> \alpha \beta = -1/9$$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$

$$=(-4/9)^2+4/9$$

$$= 52/81$$

$$|\alpha - \beta| = \sqrt{52/9}$$

Hence option b is the answer.